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Interacting Quantum and Classical Continuous
Systems II. Asymptotic Behavior of the
Quantum Subsystem
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In the framework of event-enhanced quantum theory the dynamical equation
for the reduced density matrix of a quantum system interacting with a con-
tinuous classical system is derived. The asymptotic behavior of the correspond-
ing dynamical semigroup is discussed. The example of a quantum�classical
coupling on Lobatchevski space is presented.
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1. INTRODUCTION

The interest in quantum dynamical semigroup is based basically on their
two important properties: they can be applied for the description of irre-
versible processes and provide a convenient mathematical framework for
the study of the approach to equilibrium of open quantum systems. In the
second problem one tries to answer when the system, irrespectively of its
initial state, evolves into one specific state. More precisely one tries to
establish the existence of the limit of the expectation value limt � � Tr\(t) A
for all observables A, and to show the independence of these limits of the
initial state \0 . Conditions for a dynamical semigroup to evolve into a
unique stationary state were found in the case of N-level quantum
systems(33, 34) or when a dynamical semigroup possesses a faithful normal
state.(13, 14, 36) These results were next generalized by Frigerio and Verri(15)
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to the case when the recurrent subspace projection R asymptotically
approaches the identity operator, and by Ku� mmerer, Nagel and Groh(16, 22)

for dynamical semigroups possessing a faithful family of normal subin-
variant states. To our knowledge the case of a dynamical semigroup having
no normal stationary state (apart from an example given by Evans(12)) was
not investigated.

It is our objective to examine such a case, which arises naturally in the
framework of event enhanced quantum theory.(3�5) In this approach one
starts with an explicit split between a quantum system, which is not
directly observable, and a classical system where events happen. From the
kinematical point of view the total system is described by the tensor
product of a non-commutative quantum algebra of observables with a
commutative algebra of functions defined on a classical phase space.
A dynamical semigroup of completely positive operators on the total algebra
replaces Schro� dinger unitary dynamics. It ensures the flow of information
from the quantum system to classical one and, on the other hand, the
influence of classical variables on the evolution of the quantum system. The
construction of the coupling operator in the case when the quantum system
is characterized by generalized coherent states on a homogeneous space
(and more generally: by a semispectral measure) was presented in ref. 28.
In ref. 6 it was shown that the evolution of ensembles is described by a
Markov�Feller process, the so-called piecewise deterministic process. The
modification of the classical trajectories of motion was also discussed. In
the present paper we concentrate on the asymptotic behavior of the
reduced density matrices obtained from the total density operators by
tracing over the classical variables. In Section 2 we derive the evolution
equation for the reduced density matrix and show that it fits into the
framework of the quantum stochastic processes of Davies.(7�9) Although
these processes were introduced in order to describe rigorously certain
measurement procedures, they also arise in the description of quantum
systems interacting with classical systems. In Section 3 we determine the
spectrum of the evolution generator and describe the asymptotic behavior
of the dynamical semigroup. Concluding remarks are presented in Section 4.

2. THE DYNAMICAL EQUATIONS

2.1. The Framework

Let us briefly describe the framework for the classical-quantum
coupling. At first we consider a classical system C with a finite number of
degrees of freedom. Its phase space is a symplectic manifold (M, |). The
C*-algebra C0(M) of continuous functions vanishing at infinity represents
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the complex observables of the system. Because it will be more convenient
to consider von Neumann algebras we pass to the representation in the
Hilbert space Hc=L2(M, B, +), where B is the Borel _-algebra and d+ is
the unique Borel measure determined by the volume form |n, n=dim M�2.
We assume that the classical algebra Ac equals to C0(M)"=L�(M, B, +).
Statistical states of C are then normed and positive elements of
L1(M, B, +). The time evolution of C is described by a flow on M, i.e.,
a mapping g: (t, x) � gt(x) such that:

(a) g: R_M � M is smooth,

(b) for any t, gt is a diffeomorphism of M,

(c) t � gt is a group homomorphism.

Its generator is a complete vector field X on M. It gives an ultraweakly
continuous one parameter group of automorphisms of Ac : f (x) � f ( g&1

t x),
x # M. Its generator we denote by $c .

Now we come to the quantum system. Let us consider a quantum par-
ticle on a homogeneous configuration space Q=G�K, where G is a Lie
group and K is a closed subgroup. We assume moreover that G and K are
both unimodular. The quantum theory of such a system can be introduced
by using the concept of generalized coherent states(29) (see also ref. 20). Let
(?, Hq) be a unitary, strongly continuous and irreducible representation of
G, such that for every k # K ?(k) �0=eia(k)�0 for some unit vector �0 # Hq .
It follows that for each q # Q we have a one-dimensional projector Pq=
|?( g) �0)(�0 ?( g)|, where [ g]=q. We assume that the system of coherent
states is square integrable and normalized, i.e.

|
Q

d:(q) Pq=1

in the strong sense, where d: is a unique G-invariant and _-finite Borel
measure on Q. We also assume that for every q # Q the reproducing kernel
q$ � K(q, q$)=(q, q$) vanishes only on a set of :-measure zero. This
assumption can be often easily verified. For example in the case of unitary
group U(n) with the natural representation in Cn there is

Q=U(n)�U(n&1)_U(1)=CPn&1

and so |�$) � (�, �$)=0 only when |�$) # CPn&2, which is imbeded
into Q. And :(CPn&2)=0. In many infinite dimensional examples the
space Q is a Ka� hler manifold and the orbit |?( g) �0) is a complex sub-
manifold of CP(Hq). Such a representation is called a Ka� hler coherent state
representation.(23) In this case the representation (?, Hq) has a holomorphic
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realization and so the reproducing kernel is a holomorphic function. Hence
the required assumption is clearly satisfied. The quantum algebra Aq is
defined as

Aq={| f (q) Pq d:(q), f # Cc(Q)="
=[Pq , q # Q]"

Proposition 2.1. Aq is equal to B(Hq), the algebra of all bounded
and linear operators on Hq .

Proof. It is enough to show that Aq contains all one-dimensional
projectors. Because the representation ? is irreducible so finite linear com-
binations of elements ?( gi) �0 are dense in Hq . Because PqPq$=
K(q, q$) |q)(q$| and PqPq$ # Aq , so any P=|�)(�| is a weak limit of one-
dimensional projectors belonging to Aq . K

Statistical states of the quantum system are given by non-negative
density matrices \ # Aq with Tr(\)=1. The time evolution is given by
A � eitHAe&itH, where H is the operator closure of (d?(h), DG), h # G��the
Lie algebra of group G, and DG is the Ga# rding domain. Clearly H is a self-
adjoint operator. The generator i[H, } ] describing the evolution of the
quantum system will be denoted by $q .

Let us now consider the joint system. For the total algebra AT we take
the tensor product AT=Ac�Aq as von Neumann algebras on H� =
Hc�Hq . The set of states is equal to

ST={\~ # AT*
: \~ (x) # Tr(Hq)+ a.e. and |

M
Tr(\~ (x)) d+(x)=1=

where Tr(Hq) denotes the Banach space of trace class operators on Hq . The
mean value of A� # AT in a state \~ # ST is given by

(A� ) \~ =|
M

d+(x) Tr[A� (x) \~ (x)]

Now let us discuss the time evolution of the total system. The total gener-
ator consists of three parts: $c� id, id�$q and a coupling operator L,
which describes the interaction between the classical and the quantum
system. To construct L we assume that to every point q # Q corresponds a
shift on the phase space M. By shift we mean a morphism of (M, B, +), i.e.,
a bijective map hq : M � M such that hq and h&1

q are measurable and leave
the measure d+ invariant. Moreover we require that for any f # Cc(M) and
any x # M the mapping q � f (h&1

q x) is measurable.

936 Blanchard and Olkiewicz



Proposition 2.2. Suppose A� # AT . Let

L(A� )(x)=* |
Q

d:(q) PqA� (hq x) Pq&*A� (x)

where *>0 is the coupling constant. Then L is a bounded and complete
dissipation such that L(1� )=0, where 1� is the unit in AT . Moreover L is
normal.

Proof. It follows from a more general construction presented in
ref. 28, if we put the measure &x=*1�2$e , where $e is the Dirac measure
concentrated on the neutral element in G. K

Corollary. The operator

B=$c� id+id�$q+L

generates a dynamical semigroup Tt on the algebra AT .

By a dynamical semigroup we understand a weak*-continuous semi-
group of contractive, completely positive and normal operators.

Because Tt is normal it admits a preadjoint operator on the predual
space AT*

. We denote it by Tt*
. The semigroup t � Tt*

is strongly con-
tinuous and its generator is given by B

*
=$ad

c � id+id�$ad
q +L

*
, where

L
*

\~ (x)=* |
Q

d:(q) Pq\~ (h&1
q x) Pq&*\~ (x)

2.2. Tracing over Classical Variables

Now we derive the evolution equation for the reduced density matrix
\t=�M d+(x) \~ t(x) corresponding to the quantum system.

\* t=|
M

d+(x) \~* t(x)=|
M

d+(x)[$ad
c � id+id�$ad

q +L
*

] \~ t(x)

Let us notice that for simple tensors ,�\, , # L1(M, B, +), \ # Tr(Hq)
such that , # D($ad

c ) and \ # D($ad
q ) there is

|
M

d+(x)($ad
c � id)(,�\)(x)=\ |

M
d+(x) ,(x) $c(1)(x)=0
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and

|
M

d+(x)(id�$ad
q )(,�\)(x)=$ad

q \\ |
M

d+(x) ,(x)+
Because \~ t # D(B

*
) and B

*
is the closure of the corresponding operator

defined on the algebraic tensor product D($ad
c )�D($ad

q ) we have that

\~ t= lim
n � �

:
n

i=1

, i�\i

and

lim
n � �

($ad
c � id+id�$ad

q ) \ :
n

i=1

, i�\i+=($ad
c � id+id�$ad

q ) \~ t

Because the tracing operator is continuous and $ad
q is closed we conclude

that

|
M

d+(x)($ad
c � id+id�$ad

q ) \~ t(x)=$ad
q \|M

d+(x) \~ t(x)+
Finally

|
M

d+(x)(L
*

\~ t)(x)=* |
M

d+(x) |
Q

d:(q) Pq\~ t(h&1
q x) Pq&*\t

=* |
Q

d:(q) Pq\tPq&*\t

Hence the time evolution equation for \t is given by

\* t= &i[H, \t]+* |
Q

d:(q) Pq\tPq&*\t

For simplicity we denote the above generator also by B
*

and its dissipative
part by L

*
. Hence B

*
= &i[H, } ]+L

*
. The semigroup it generates we

denote also by Tt*
and its adjoint acting on B(Hq) by Tt .

2.3. Connection with the Davies Quantum Processes

Let us consider a quantum stochastic process on (Q, Tr(Hq)) as
defined in ref. 7. By Theorem 4.7 from ref. 7 such a process is uniquely
characterized by a generator Z of a strongly continuous one parameter
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semigroup on Hq and by a bounded stochastic kernel J. Let us recall that
a bounded stochastic kernel is a bounded positive _-additive measure on
the _-algebra of Borel sets in Q with values in bounded linear operators on
Tr(Hq). The only condition they have to satisfy is

Tr[J(Q, P�)]= &2 Re(Z�, �)

for all normalized � # D(Z). Here P�=|�)(�|. At first let us notice that
for any Borel subset E/Q and A # B(Hq) the following formula

Tr[J(E, \) A]=|
E

Tr(Pq\Pq A) d:(q)

define a bounded stochastic kernel (Theorem 5.1 in ref. 7). Putting
Z=iH& 1

21 we obtain that

Tr[J(Q, P�)]=|
Q

d:(q) Tr(Pq P�Pq)=1=&2 Re(Z�, �)

so Z and J are infinitesimal generators of some quantum stochastic process.
The strongly continuous semigroups on Tr(Hq) associated with the process
and expressed in terms of Z and J reads

T p
t (\)=etZ*\etZ+tJ(Q, \)+o(t)

for small t. Its generator, let say B p, is given by

B p(\)=&i[H, \]&\+|
Q

d:(q) Pq \Pq

and coincides with B
*

. Finally, let us notice that from the identity
Pgq=?( g) Pq?( g)* it follows that J is covariant with respect to the
representation ?, i.e., the equality

J( gE, \)=?( g) J(E, ?( g)* \?( g)) ?( g)*

holds for all \ # Tr(Hq), E # B(Q) and g # G.(8)

3. THE ASYMPTOTIC BEHAVIOR OF Tt*
AND Tt

3.1. Preliminaries

For a closed densely defined linear operator A with domain D(A) in
a Banach space X we denote by \(A) its resolvent set. The resolvent
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R(z, A)=(z1&A)&1 is a holomorphic function in z for all z # \(A). We
call z0 a pole of the resolvent if R(z, A) has a Laurent expansion

R(z, A)= :
�

k=&1

Bk(z&z0)k, B&1{0

for all z in some neighborhood of z0 . The operator B&1 is called the residue
of R(z, A) at z0 . The spectrum _(A)=C"\(A) will be divided into two
parts:

the approximate point spectrum

A_(A)=[* # C : *&A is not injective or (*&A) D(A) is not closed in X ]

and the residual spectrum

R_(A)=[* # C : (*&A) D(A) is not dense in X ]

Clearly we have _(A)=A_(A) _ R_(A) but the union need not be disjoint.
Another partition of _(A), more used by physicists, is given by:

the point spectrum

_p(A)=[* # C : *&A is not injective]

the continuous spectrum

_c(A)=[* # C : (*&A) D(A) is dense but not closed in X ]

and the (strict) residual spectrum

_r(A)=[* # C : *&A is injective and (*&A) D(A) is not dense in X ]

Now _p(A), _c(A) and _r(A) are mutually disjoint and their union is also
equal to _(A). Between these sets exist the following relations: _p/A_,
_r/R_/_p _ _r and _c/A_. The usefulness of A_ and R_ follows from
the following:

Proposition 3.1. (a) * # A_(A) iff there exists a sequence [xn],
xn # D(A), &xn &=1 such that limn &Axn&*xn&=0.

(b) the topological boundary �_(A) of _(A) is contained in A_(A).

(c) R_(A)=_p(A*), where A* is the adjoint operator in X*. More-
over _(A)=_(A*).
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Suppose that X is a complex Banach space such that X=XR+iXR ,
where XR is a real Banach subspace of X. We say that (XR , X+) is an
ordered Banach space if X+ is a closed cone in XR (a cone of positive
elements). X+ is called proper if X+ & &X+=[0], generating if XR=
X+&X+ and weakly generating if the norm closure of X+&X+ is equal
to XR . Let (X*R , X*+) denote the ordered dual Banach space. A point
x # X+ is called a quasi-interior point if |(x)>0 for all | # X*+"[0]. It
follows that the set of quasi-interior points qu.int.X+ is either empty or
norm dense in X+ . A subcone C of X+ is said to be hereditary if for any
y # X+ , y�x and x # C implies that y # C. For arbitrary subcones C/X+

and C*/X*+ we define

C ==[| # X*+ : |(x)=0 \x # C ]

(C*)�=[x # X+ : |(x)=0 \| # C*]

X+ is said to be sharp if each hereditary subcone C of X+ for which
C ==[0] is norm dense in X+ . Similarly, we say that X*+ is *-sharp if
each hereditary subcone C* of X*+ for which (C*)�=[0] is weak* dense
in X*+ . It is known that Tr(Hq) is sharp and B(Hq) is *-sharp (Example
2.5.5 in ref. 2). Suppose that Tt , t�0 is a strongly continuous semigroup
of contractions in X. Tt is said to be strictly positive if Tt(X+"[0])/
qu.int.X+ for all t>0, norm-ergodic if for each x # X+"[0] the smallest
T-invariant hereditary subcone of X+ containing x is norm dense in X+ ,
norm-irreducible if there is no proper norm closed T-invariant hereditary
subcone of X+ . Similarly, we say that Tt* is weak*-irreducible if there is
no proper weak* closed T*-invariant hereditary subcone of X*+ .

Finally, let us notice that since Tt is a contraction, the complex half-
plane [z # C : Re z>0] is contained in \(A), where A is the generator of Tt .
The set _(A) & iR we call the peripheral spectrum of A. It plays an important
role in the analysis of the asymptotic behavior of the semigroup Tt . At last,
by Fix(T ) we denote the set [x # X : Tt(x)=x] for all t�0.

3.2. The Peripheral Spectrum of L
*

and L

Because the Hamiltonian H=d?(h) and we have not specified h # G,
so we intend to control the behavior of the semigroup Tt*

and its adjoint
Tt by the properties of the semigroup St*

=exp(tL
*

). Let us notice that
(St*

)*=St=exp(tL).

Lemma 3.2. If \ # Tr(Hq)+"[0] then St*
(\) is faithful for any

t>0.
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Proof. It is enough to show that St*
(P) is faithful for each one-

dimensional projector P. Because L
*

is bounded so

St*
(P)=P+tL

*
(P)+

t2

2!
L2

*
(P)+ } } }

=e&t _P+t |
Q

d:(q) f1(q) Pq+
t2

2! |Q
d:(q) f2(q) Pq+ } } } &

where f1(q)=Tr(PPq), f2(q)=� d:(q$) Tr(Pq Pq$) f1(q$) and so on. Suppose
that there exists a normalized vector � # Hq such that St*

(P) �=0. Then

(�, St*
(P) �) =e&t _Tr(PP�)+t |

Q
d:(q) f1(q) Tr(Pq P�)+ } } } &=0

for P�=|�)(�|. Because each summand is nonnegative so they all have to
be zero. Let us consider the third one.

|
Q

d:(q) f2(q) Tr(PqP�)=0 (1)

At first we show that f2(q)>0 for all q. Suppose that there exists q0 such
that f2(q0)=0. It means that

|
Q

d:(q) Tr(Pq0
Pq) f1(q)=0

Because q � |(q0 , q) |2 vanishes only on a set of :-measure zero so
f1(q)=0 for almost every q. But � d:(q) f1(q)=1 so we get a contradiction.
Hence f2(q)>0 and Eq. (1) is satisfied only if Tr(Pq P�)=0 for all q.
But it is impossible since again � d:(q) Tr(Pq P�)=1. Hence St*

(P) is
faithful. K

Corollary. St*
is strictly positive.

Lemma 3.3. St*
is norm-irreducible in Tr(Hq).

Proof. It is equivalent to show that St is weak*-irreducible. By
Proposition 2.1 [Pq , q # Q]$=C1 so we may use Theorem 4.1 in ref. 12.
Another argument is of the following type. Because the positive cone
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Tr(Hq)+ is sharp and St*
is strictly positive so the norm-irreducibility of

St*
follows from Theorem 2.5.1 in ref. 2. K

Remark. By the second argument we showed a little more, namely
that St*

is norm-ergodic.

Now we consider the peripheral spectrum of the generators L
*

and L.

Lemma 3.4. _(L
*

) & iR/[0].

Proof. It is clear that _(L
*

) & iR/A_(L
*

). Suppose that there exists
: # R such that i: # A_(L

*
). Then there exists a sequence of ,n # Tr(Hq)

such that &,n&Tr=1 and

L
*

(,n)=i:,n+hn (2)

with &hn&Tr � 0. Every ,n has the polar decomposition ,n=Un |,n |, where
Un is a partial isometry and Tr |,n |=1. Hence

(L
*

(,n), Un*)=�|Q
d:(q) Pq ,nPq , Un*�&1

=i:+(hn , Un*)

taking the limit n � � we conclude that

lim
n � � |

Q
d:(q) Tr( |,n | PqUn*PqUn)=1+i:

and so

lim
n � � } |Q

d:(q) Tr( |,n | PqUn*Pq Un) }=- 1+:2

Every |,n | admits the representation

|,n |= :
�

k=1

a (n)
k P (n)

k , a (n)
k �0, :

�

k=1

a (n)
k =1

where P (n)
k =|� (n)

k )(� (n)
k | are one-dimensional orthogonal projectors.

Hence
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} |Q
d:(q) Tr( |,n | PqUn*Pq Un) }
� :

�

k=1

a (n)
k |

Q
d:(q) |Tr(P(n)

k PqUn*PqUn)|

= :
�

k=1

a (n)
k |

Q
d:(q) |(q, � (n)

k ) | } |(q, Un � (n)
k ) | } |(q, Un*q) |

� 1
2 :

�

k=1

a (n)
k |

Q
d:(q)( |(q, � (n)

k ) | 2+|(q, Un� (n)
k ) |2)

= 1
2 :

�

k=1

a (n)
k |

Q
d:(q)[Tr(PqP (n)

k )+Tr(Pq UnP (n)
k Un*)]=1

Hence :=0. K

Lemma 3.5. If dim Hq=� then Fix(S
*

)=0.

Proof. Because [Pq , q # Q]$=C1 so any \ # Tr(Hq) such that
L

*
(\)=0 has to be proportional to the identity operator.(12) But Hq is

infinite dimensional so \=0. K

If dim Hq=d is finite then there exists a unique invariant density
matrix given by \=(1�d ) 1. Since this case is well known we assume from
now that dim Hq=�.

It is clear that 0 # _p(L). Thus we obtained the following:

Theorem 3.6.

_(L
*

) & iR=R_(L
*

) & iR=A_(L
*

) & iR=[0]

_p(L
*

) & iR=_c(L
*

) & iR=<

_(L) & iR=_p(L) & iR=[0] and Fix(S)=ker(L)=C1

Proof. Only the last statement needs a proof but it follows from
Theorem 3.1 in ref. 12. K

Remark. Let us notice that, in general, the peripheral spectrum of
a semigroup generator has a nice structure. Its study was motivated by the
Frobenius theorem. Let us recall his result: for an irreducible square matrix
A such that its entries Aij are nonnegative and with the spectral radius r(A)
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the set of eigenvalues * satisfying |*|=r(A) is cyclic.(32) A similar result was
shown for a positive semigroup of contractions on a Banach lattice, hence
on commutative C*-algebras, (see Section C-III in ref. 25). Namely, it
states that the peripheral spectrum of the generator is cyclic. Passing to the
dynamical semigroups on noncommutative C*-algebras the condition of
the irreducibility has to be imposed again. If a weak*-irreducible and iden-
tity preserving semigroup etA with the preadjoint etA

* acts on a von
Neumann algebra then assuming that etA is of Schwartz type (etA(x*x)�
etA(x)* etA(x)) and that _p(A

*
) & iR{< it was shown that _p(A

*
) & iR is

an additive subgroup of iR (Theorem 1.10 Section D-III in ref. 16). If we
admit the case _p(A

*
) & iR=<, it can be shown that _p(A) & iR is an

additive subgroup of iR. Finally, we show that the semigroup Tt*
has also

the preadjoint semigroup. Let K(Hq) denote the space of all compact
operators.

Proposition 3.7. Tt : K(Hq) � K(Hq).

Proof. Because L |Tr=L
*

: Tr(Hq) � Tr(Hq) and Tr(Hq) is dense in
the operator norm in K(Hq), so the assertion follows by the continuity in
the operator norm of L. K

Corollary. Tt is not norm-irreducible on B(Hq). The generator of
the restricted semigroup Tt |K we denote by L | K . Clearly we have the
following.

Proposition 3.8. _(L |K) & iR=_c(L |K) & iR=[0].

3.3. The Ergodic Properties of Tt*
and Tt

We will first establish the relationship between the semigroups Tt

and St . Let Vt=eitH. Because H=d?(h) so Vt=?( gt), where gt=exp(th).

Proposition 3.9. Tt(A)=VtSt(A) Vt* for all A # B(Hq).

Proof. Because the stochastic kernel J is ?-invariant (Section 2.3),
so Vt L(A) Vt*=L(Vt AVt*) and so VtSt$ (A) Vt*=St$ (VtAVt*) for all t, t$.
Hence

Tt(A)=eit[H, } ]+tL(A)=VtSt(A) Vt*

by the Trotter product formula. K

945Interacting Quantum and Classical Continuous Systems II



Now we are in position to prove the following:

Theorem 3.10:

\\ # Tr(Hq) lim
t � �

&Tt*
\&Tr=|Tr\|

\A # K(Hq) lim
t � �

&TtA&op=0

Proof. To prove the first statement we use the qualitative stability
arguments (see Section 5.5 in ref. 27). Because _(L

*
) & iR=[0], so

lim
t � �

&St*
\&Tr=sup[ |Tr\A| : A # Fix(S), &A&op=1]

But Fix(S)=C1, so limt � � &St*
\&Tr=|Tr\|. By Proposition 3.9 this also

holds for the semigroup Tt*
.

Since, by Proposition 3.8, _(L |K) & iR=[0] and R_(L |K) & iR=<,
the second statement follows from the ABLP stability theorem.(1, 24) K

Corollary. For any two densities matrices \1 and \2 we have that

lim
t � �

&Tt*
(\1)&Tt*

(\2)&Tr=0

Passing now to the description of the ergodic properties of the semigroup
Tt*

let us notice that the set [Tt*
\ : t�0] is not relatively compact in the

weak topology on Tr(Hq). To see this suppose that the contrary is true. By
the same argument as in Lemma 3.5 we obtain that _p(B

*
) & iR=<.

Hence the semigroup Tt*
has 0 as a limit point for the weak operator

topology.(26) So there is a sequence [tn] such that limn Tr(Ttn*
\) A=0 for

any A # B(Hq). If we take A=1 and \ a density matrix we get a contradic-
tion. It follows that the net [(1�t) �t

0 Tt*
\ ds], t>0, has no limit points in

the weak topology on Tr(Hq). This argument holds also in a more general
case of a locally integrable semigroup (Theorem 7 in ref. 35).

Let Tt* with generator B* denote the adjoint semigroup acting on
B(Hq)*. Because dim ker(B)�dim ker(B*), so there is at least one T*-
invariant functional in B(Hq)*.

Proposition 3.11. Every T*-invariant functional | # B(Hq)* is
singular. Let us recall that any | # B(Hq)* has a unique decomposition
|=|n+|s onto its normal and singular part.

946 Blanchard and Olkiewicz



Proof. By the assumption Tt*(|)=| for all t�0. By Theorem 3.10
|(A)=0 for all A # K(Hq) what ends the proof. K

This result implies that we have to consider the whole space B(Hq)*.
Let /t , t�0 be a net of probability measures on the Banach space Cb(T )
of continuous and uniformly bounded functions defined on the set [Tt ,
t�0]/L(B(Hq)) and equipped with the sup norm. On L(B(Hq)) we put
the topology of the pointwise convergence, so the multiplication L(B(Hq))
_L(B(Hq)) � L(B(Hq)) is separately continuous. The net /t is defined as
follows

/0( f )= f (1) and /t( f )=
1
t |

t

0
ds f (Ts)

for all f # Cb(T ). Let + be a limit point of the net /t in the weak* topology
on Cb(T )*. Clearly, + is an invariant mean on Cb(T ). Let j: Tr(Hq) �
B(Hq)* be the canonical imbeding. For any \ # Tr(Hq) we define a map

F\ : B(Hq) � Cb(T ) F\(A)(Tt)=(TtA, j(\))

It is clear that F\ is linear and bounded. Let F\* denote its adjoint. Now
we define an operator P: Tr(Hq) � B(Hq)*, P(\)=F\*(+). It is a bounded
operator such that P=PTt*

=Tt*P for all t�0. Moreover P(\) belongs to
the closure in the weak* topology of the convex hull of [Tt*j(\), t�0]. It
follows that there exists an increasing to infinity sequence [tn] such that
for every \ # Tr(Hq)

P(\)=w*-lim
n � �

j \ 1
tn
|

tn

0
ds Ts*

\+ (3)

Remark. On the subspace Tr(Hq)0=[\ # Tr(Hq) : Tr\=0], which is
equal to the norm closure of Range B

*
in Tr(Hq) we can define a T

*
-invari-

ant projector P0 : Tr(Hq)0 � Tr(Hq) (see Theorem 5.1 in ref. 10). Between P0

and P there is the following relation.(11) P(\) # Tr(Hq) if and only if
\ # Tr(Hq)0 and for such \ there is P(\)=P0(\)=0, the second equality
holds because P0 is the projector onto Fix(T

*
) in Tr(Hq).

Proposition 3.12. P(\)=(Tr\) | for some | # Fix(T*). Hence
dim Range P=1.

Proof. If Tr(\)=0 then P(\)=0 by the above remark. We show that
for any \1 and \2 such that Tr\1=Tr\2=1 there is P(\1)=P(\2). Let
A # B(Hq). Then
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|(A, P(\1&\2)) |= lim
n � � }�A, j \1

tn
|

tn

0
ds Ts*

(\1&\2)+�}
= lim

n � �

1
tn
|

tn

0
ds |(Ts*

(\1&\2), A) |

�&A&op lim
n � �

1
tn
|

tn

0
ds &Ts*

(\1&\2)&Tr=0

since &Ts*
(\1&\2)&Tr � 0 for s � �. So P(\1&\2)=0. K

Corollary. For the same sequence [tn] we have that

w*-lim
n � �

1
tn
|

tn

0
ds TsA=|(A) 1

for every A # B(Hq).

Proof. It follows from formula (3) and Proposition 3.12. K

Finally, let us describe the space Fix(T*). To do this we introduce the
ultrapower B� (Hq) of the von Neumann algebra B(Hq). Let U be a free
ultrafilter (i.e., not generated by a single set) on the set of natural num-
bers N. If l�(B(Hq)) is the Banach space of all uniformly bounded func-
tions N � B(Hq), then

cU(B(Hq))=[(An) # l�(B(Hq)) : lim
U

&An&op=0]

is a Banach subspace. For the definitions of an ultrafilter and the limit of
a filter see for example ref. 21. By the ultrapower we understand the
quotient Banach space

B� (Hq)=l�(B(Hq))�cU(B(Hq))

Because U is an ultrafilter, so the norm of an abstract class [(An)] # B� (Hq)
is given by &[(An)]&=limU &An&op .(32) It is clear that cU(B(Hq)) is a two
sided ideal in l�(B(Hq)) and so B� (Hq) is a C*-algebra. There is a canonical
embedding of B(Hq) into B� (Hq), A � [(A, A,...)], which is an isometry.
Moreover, every T # L(B(Hq)) has an extension (also called canonical) to
an operator T� on B� (Hq) given by T� [(An)]=[(TAn)].

Theorem 3.13. dim Fix(T*)=�.
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Proof. Suppose that the contrary is true, i.e., dim Fix(T*)<�.
Because Tt* is a contraction, so

Fix(T*)=Fix(*R(*, B*))#Fix(R*)

By Theorem 4.4 Section D-IV in ref. 16 we obtain that dim Fix(R� )<�,
where R� (*, B) is the canonical extension of the resolvent R(*, B), *>0,
onto some ultrapower B� (Hq). Hence, by Proposition 2.3 Section D-III in
ref. 16, point 0 is a pole of the resolvent R(*, B) such that the correspond-
ing residue has finite rank. Using the results of Groh(17, 18) we conclude that
every T*-invariant state is normal. Hence we get a contradiction with
Proposition 3.11. K

Example. Let us consider a classical particle moving freely, i.e.,
along a geodesic curve, on the Lobatchevski space

Q=R_R+=[(q1 , q2) : q2>0]

Let us recall that a geodesic curve is a vertical straight line or a semicircle
with the center placed in an arbitrary point on the x1-axis. This particle
interacts with a quantum particle on the same space. To describe the quan-
tum system we use the system of generalized coherent states on Q.(29) Let
us recall that Q is a homogeneous space Q=SL(2, R)�SO(2). For sim-
plicity we take the first representation from the series (Hk , ?k), where
k=1, 3�2, 2,... . That is

Hq={ f : & f &2=| d+1(z) | f (z)|2<�=
where f is a holomorphic function in the unit complex disc |z|<1 and
d+1=(1�?) dz dz� . For q=(q1 , q2) # Q we have one-dimensional projectors
Pq=|`)(`|, where

|`)=
1&|`|2

(1& �̀ z)2
and `=

1&q2+iq1

1+q2&iq1

The quantum operators are given by

f� =|
Q

d:(q) f (q) Pq

where d: is the unique SL(2, R) invariant measure on Q normalized in
such a way that �Q Pq d:(q)=1, the identity operator. The modification of
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the classical paths through the interaction was discussed in ref. 6. Because
in this case the reproducing kernel is a holomorphic function such that
|K(q, q$)|2=TrPqPq$>0, all results concerning the asymptotic behavior of
the quantum system hold. Because Tt : K(Hq) � K(Hq), so we can define
the quotient semigroup T� t on the Calkin algebra C=B(Hq)�K(Hq),
T� t[A]=[Tt A]. Because any state | # Fix(T*) is singular, so it induces a
state |~ on C, |~ [A]=|(A). Clearly |~ # Fix(T� *). On this example we show
that even |~ may not be faithful.

Proposition 3.14. There exists an infinite dimensional projector Q
such that |(Q)=0.

Proof. Because Tt*(|)=| for all t�0, so it is enough to show that

lim
t � �

&TtQ&op= lim
t � �

&St Q&op=0

Let B0(Hq) denote the linear subspace in B(Hq) on which the semigroup St

is stable, i.e., limt � � &St A&op=0 iff A # B0(Hq). It is clear that B0(Hq) is
closed in the operator norm. By Corollary 3.4 in ref. 31 we have that

.
s>0

Range(Ss&id )/B0(Hq)

Hence also Range(L)/B0(Hq). Let |n) =- n+1 zn, n # N _ [0]. Then
[ |n)] form an orthonormal base in Hq .(29) It was shown in ref. 28 that for
Pn=|n)(n| the following formula holds

L(Pn)= :
�

m=0

6(n, m) Pm&Pn

where 6(n, m) is a symmetric probability kernel on N _ [0] given by

6(n, m)=
2(m+1)(n+1)

(n+m+1)(n+m+2)(n+m+3)

It means that 6(n, m)=6(m, n) and �m 6(n, m)=1. Let us choose a
subsequence of natural numbers [nk] (for example nk=2k) such that bm=
�k 6(nk , m) satisfies limm � � bm=0. Let H0 be a closed subspace gener-
ated by [ |nk)], k # N and let Q denote the projector onto H0 . Because

PqQPq=Tr(QPq) Pq=_ :
�

k=1

Tr(Pnk
Pq)& Pq
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so

|
Q

d:(q) PqQPq= :
�

k=1
|

Q
d:(q) Tr(Pnk

Pq) Pq= :
�

k=1 _ :
�

m=0

6(nk , m) Pm&
= :

�

m=0

bmPm # K(Hq)/B0(Hq)

Because L(Q) # B0(Hq), so also Q # B0(Hq). K

4. CONCLUDING REMARKS

In the present paper we continue the analysis of the properties of a
possible classical-quantum coupling when the interaction between the
classical and quantum system is given by a completely positive semigroup.
Although the semigroup describes the time evolution of the total system we
can also consider the behavior of its classical and quantum part. In the pre-
vious paper(6) we concentrated on the construction of the associated
piecewise deterministic process and on the modification of classical paths
through the interaction. Here we considered the asymptotic behavior of the
quantum subsystem. It was shown that for infinite dimensional quantum
systems it is impossible to establish the limit limt � � Tr\(t) A for all
observables A. In order to obtain such a strong ergodic property one has
to restrict the set of observables to a suitable T-invariant subspace
A/B(Hq). For example, we can define A as the set of all A such that
|1(A)=|2(A) for any |1 , |2 # Fix(T*). Then, for such A, there would be
exactly one invariant state and we could use the qualitative stability
theorem. The role of an actualized subset of observables was discussed in
ref. 30. In general, the weak*-closure of the convex hull of the set [ j(Tt*

\),
t�0] contains infinitely many invariant singular states. Because
Fix(T

*
)=0 does not separate Fix(T )=C1, and Fix(T ) does not separate

Fix(T*), we can not expect a more precise description of the ergodic
properties of the semigroup Tt . This differs significantly from the case of
finite dimensional quantum systems. It is also different from the asymptotic
behavior of the coupled spin-boson system. Such a coupling of a spin 1

2

system with an infinitely extended free Bose gas at positive temperature
was discussed in ref. 19. It was shown there that for a coupling of
Hamiltonian type with a small coupling parameter * the total system has
the property of return to equilibrium. In the limit * � 0 the partial trace of
a total density matrix with respect to the reservoir variables gives, at
t � �, a Gibbs state on the matrix algebra M2_2(C).
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